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Abstract: An important ingredient in the construction of phenomenologically viable su-

perstring models is the uplifting of Anti-de Sitter supersymmetric critical points in the

moduli sector to metastable Minkowski or de Sitter vacua with broken supersymmetry.

In all cases described so far, uplifting results in a displacement of the potential minimum

away from the critical point and, if the uplifting is large, can lead to the disappearance of

the minimum altogether. We propose a variant of F-term uplifting which exactly preserves

supersymmetric critical points and shift symmetries at tree level. In spite of a direct cou-

pling, the moduli do not contribute to supersymmetry breaking. We analyse the stability of

the critical points in a toy one-modulus sector before and after uplifting, and find a simple

stability condition depending solely on the amount of uplifting and not on the details of

the uplifting sector. There is a region of parameter space, corresponding to the uplifting of

local AdS maxima — or, more importantly, local minima of the Kähler function — where

the critical points are stable for any amount of uplifting. On the other hand, uplifting to

(non-supersymmetric) Minkowski space is special in that all SUSY critical points, that is,

for all possible compactifications, become stable or neutrally stable.
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1. Introduction

The uplifting of supersymmetric critical points from Anti-de Sitter to Minkowski or de

Sitter vacua is a crucial but still not completely understood element in the standard KKLT

scenario of moduli stabilization in type IIB string theory [1]. The dilaton and complex

structure moduli are stabilized by fluxes while other non-perturbative effects stabilize the

remaining Kähler moduli at constant values that preserve supersymmetry — leading to a

cosmological AdS vacuum with negative potential energy. In the original model, uplifting

to a positive value of the potential is achieved by anti-D3 branes which break supersym-

metry explicitly. Subsequent work has concentrated mainly on D-term [2 – 11] and F-term

uplifting [12 – 23] as interesting alternatives where there is an explicit supergravity descrip-

tion and supersymmetry is only broken spontaneously, which gives better calculational

control. Uplifting by Kähler corrections has also been considered [24, 25].

In the case of F-term uplifting, one possible strategy is to combine the moduli with

another sector whose SUSY breaking properties and phenomenology are known in isolation

(Polonyi model [26], O’Raifertaigh [27], ISS [28]) and hope -or, rather, check- that the

interaction with the moduli will respect the basic features of both sectors. There are

examples in the literature both with and without direct couplings in the superpotential

between the modulus and the SUSY breaking sector.

Intuitively, one would expect compactification to be a high energy phenomenon, pos-

sibly near the Planck scale, and therefore decoupled from the low energy effective action
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describing our current Universe. This is certainly our experience. In spite of a plethora of

very precise cosmological and accelerator data, we still see no evidence of extra dimensions.

Upcoming experiments such as the Large Hadron Collider at CERN or the Planck mission

may change this picture but in any case the effect is so small that it still makes sense to

look for a general framework in which at least some of the moduli are completely stabilized

and as decoupled as possible from phenomena far below the compactification scale. Since

gravity couples to all fields and supersymmetry restricts the form of the interactions, this

task has proved somewhat tricky in supergravity.

The broader question we revisit here is how to couple two supergravity sectors in

such a way that they interact as little as possible. We must stress that this is not a

well-defined condition, as the answer depends strongly on what properties we wish to

preserve. From the point of view of low-energy phenomenology, requiring gravitational-

strength couplings may be sufficient; however, at higher energies this condition can become

difficult to check explicitly when there are moduli or inflatons involved with near-Planckian

vacuum expectation values. Instead, in these regimes, supersymmetry seems a much more

powerful guiding principle and one that has been very successful in other contexts. It also

facilitates comparison with string theory, where the supersymmetry of some configurations

can be determined explicitly without reference to N=1 supergravity.

A particularly challenging decoupling problem is encountered when trying to construct

stringy models of slow roll inflation (for a recent review see [29] and references therein).

In general it is impossible to know if a given field is a good candidate for an inflaton

until the complete potential is known because the fields always evolve in the steepest

direction of the potential. Even if the slow-roll conditions are satisfied for a given field

one must make sure that all other fields are properly stabilized. To make matters worse,

in the standard KKLT and racetrack [30 – 32] scenarios, inflation can easily destabilize the

moduli, leading to decompactification. It is therefore important to understand what kind of

supergravity lagrangians have interactions between the inflaton and the moduli such that,

on the one hand, the slow-roll conditions are not spoilt and, on the other, no modulus

becomes unstable during inflation. Shift symmetries are sometimes invoked to solve the

first problem, for instance in relation to BPS configurations of D3-D7 branes [33 – 35].1 The

second condition, in the absence of finetuning, seems to lead to the generic constraint that

the scale of inflation has to be below the gravitino mass [37, 38]. Therefore it is important

to find phenomenologically viable models with this property or else find ways of evading

the constraint.

In this paper we propose a way of coupling supergravity sectors that preserves some

of their supersymmetry properties such as supersymmetric critical points and shift sym-

metries, at tree level. A very important clue comes from Kähler invariance because the

properties we wish to preserve are invariant under Kähler transformations. We will require

the total action of the coupled sectors to be invariant under Kähler transformations of the

individual sectors. This limits the validity of our approach since each sector must have

an independent description in terms of N=1 SUGRA, with a non-zero superpotential, and

1Shift symmetries have also been used to solve the η problem in more general contexts [36].
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we assume all fields are Kähler invariant. The assumption of non-zero superpotentials is

reasonable since our world, the visible sector, is described by a near-Minkowski vacuum

with broken supersymmetry, and it also holds generically for the moduli sector [1]. More-

over, D−term uplifting is not possible without F−term uplifting as well [39, 40], so we

concentrate here on the simplest case of uncharged chiral superfields, say {zα} for the su-

persymmetric (”moduli”) sector and {φi} for the SUSY-breaking sector responsible for the

uplifting. In that case the D-terms are zero and the two sectors are fully described by Kähler

functions2 G(1)(z, z̄) = K(1)(z, z̄)+ln |W (1)(z)|2 and G(2)(φ, φ̄) = K(2)(φ, φ̄)+ln |W (2)(φ)|2.
K(1) and K(2) are, as usual, the Kähler potentials that determine the scalar manifold metric

and W (1) and W (2) the holomorphic superpotentials. The condition of Kähler invariance

then tells us that, if the Kähler potential K of the coupled system is of the form

K = f ( K(1),K(2) ) or, more generally, F ( K,K(1),K(2)) = 0 (1.1)

for some function F , the Kähler function of the coupled system G must be of the form

G = f ( G(1), G(2) ) or, more generally, F ( G,G(1), G(2) ) = 0 . (1.2)

In the particular case where the kinetic terms of the two sectors are decoupled and the

Kähler potential is separable,

K(zα, z̄ᾱ, φi, φ̄ī) = K(1)(zα, z̄ᾱ) + K(2)(φi, φ̄ī) ,

this prescription leads uniquely to the ansatz

G(zα, z̄ᾱ, φi, φ̄ī) = G(1)(zα, z̄ᾱ) + G(2)(φi, φ̄ī) , (1.3)

that is, to the product (as opposed to the sum) of superpotentials

K(zα, z̄ᾱ, φi, φ̄ī) = K(1)(zα, z̄ᾱ) + K(2)(φi, φ̄ī) (1.4)

W (zα, φi) = W (1)(zα)W (2)(φi). (1.5)

This ansatz is not new. Binetruy et al. [41] discuss it as a sufficient condition for integrating

out heavy chiral multiplets in a supersymmetric way. Later Hsu et al. [33] used this ansatz

to characterize an effective SUGRA theory describing D3-D7 brane inflation in a type IIB

string compactification.

By contrast, the usual ansatz invoked for gravitational strength couplings,

K(zα, z̄ᾱ, φi, φ̄ī) = K(1)(zα, z̄ᾱ) + K(2)(φi, φ̄ī) (1.6)

W (zα, φi) = W (1)(zα) + W (2)(φi). (1.7)

suffers from an ambiguity in the case where the superpotentials are nonzero, since it depends

on the Kähler gauge chosen in each sector before combining them. A Kähler transformation

2We use units with MP = 1 throughout
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of each sector separately, K(I) → K(I) + 2 Ref (I), and W (I) → W (I)e−f(I)
, I = 1, 2, leads

to

K = K(1)(z, z̄) + K(2)(φ, φ̄) → K + 2Re(f (1)(z) + f (2)(φ)) (1.8)

W = W (1)(z) + W (2)(φ) → W (1)(z)e−f(1)(z) + W (2)(φ)e−f(2)(φ) (1.9)

which is equivalent to

K = K(1)(z, z̄) + K(2)(φ, φ̄) (1.10)

W = W (1)(z)ef(2)(φ) + W (2)(φ)ef(1)(z) , (1.11)

a completely different final theory with direct couplings between the two sectors. The

relation between the ansatz (1.7) and gravitational strength couplings is therefore more

subtle than is usually assumed.

As we mentioned before, the ansatz that we propose to couple sectors (1.3) exactly

preserves supersymmetric critical points, in contrast with the standard ansatz (1.7), which

generically leads to a shift of these points. If we take zα
0 and φi

0 to be supersymmetric

critical points of the z and φ sectors respectively:

[∂αW (1) + ∂αK(1)W (1)]zα
0

= 0 [∂iW
(2) + ∂iK

(2)W (2)]φi
0

= 0, (1.12)

the field configuration (zα
0 , φi

0) in general will not be a SUSY critical point of the total

theory defined by (1.7):

[∂αW + ∂αKW ]zα
0 ,φi

0
= ∂αK(1)W (2)|zα

0 ,φi
0

[∂iW + ∂iKW ]zα
0 ,φi

0
= ∂iK

(2)W (1)|zα
0 ,φi

0

(1.13)

In order to preserve the supersymmetric critical points additional conditions must be im-

posed, either the superpotentials of the individual sectors vanish at the critical point

W (1)|zα
0

= W (2)|φi
0

= 0 or the first derivatives of the Kähler potential ∂αK(1)|zα
0

=

∂iK
(2)|φi

0
= 0 are zero at the critical point, or some other suitable combination that makes

both F-terms zero. The moduli sectors appearing in the KKLT framework generically lead

to a SUSY critical point where the superpotential does not vanish, but the second condi-

tion can be satisfied provided an explicit Kähler transformation is performed before the

superpotentials are added.

The paper is organized as follows. In section 2 we will introduce our notation while

reviewing some basic features of N = 1 SUGRA actions. In section 3 we study the coupling

of two sectors following the ansatz (1.3) and its basic, model-independent properties. We

are interested in applications to F-term uplifting so we consider a supersymmetric sector

described by an arbitrary Kähler function admitting one or more critical points, which

are also critical points of the potential. The uplifting sector is also arbitrary except for

the requirement that it must have a SUSY breaking, Minkowski or de Sitter vacuum or

plateau at tree level -the latter, e.g. from a shift symmetry-. In section 4 we look at the

stability of the uplifted moduli in the simplest possible case: a toy model consisting of one

supersymmetric “modulus” field coupled to a supersymmetry breaking “uplifting” sector

consisting of neutral scalar fields. We conclude with a summary of the main results in

section 5.
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2. Review of N = 1 supergravity

We start with a quick review of the relevant SUGRA formulae to fix our notation. We

take MPlanck = 1. Consider an N = 1 SUGRA sector that we will call the supersymmetric

sector consisting of neutral chiral superfields {zα}. It is described by a Kähler potential

K(z, z̄) and a superpotential W (z). The kinetic terms are

∫

d4x
√−g Kαβ̄ ∂µzα∂ν z̄β̄gµν .

We will use the standard notation denoting derivatives by subscripts:

∂αK ≡ Kα ∂β̄K ≡ Kβ̄ ∂αβ̄K ≡ Kαβ̄ etc . . . , (2.1)

and the indices being raised and lowered with the Kähler metric Kαβ̄ and its inverse

Kαβ̄ = K−1
αβ̄

. Since the fields are uncharged and there are no gauge fields, the D-terms are

zero and the potential is given by

V = eK [Kαβ̄(∂αW + ∂αK W )(∂β̄W̄ + ∂βK W̄ ) − 3|W |2] . (2.2)

In what follows we shall omit the superscripts α and i of the fields. The action and the

supersymmetry transformations are invariant under Kähler transformations,

K(z, z̄) → K(z, z̄) + f(z) + f̄(z̄) (2.3)

W (z) → W (z)e−f(z) (2.4)

where f(z) is an arbitrary holomorphic function. If W 6= 0, both can be expressed in terms

of the Kähler function,

G(z, z̄) = K(z, z̄) + ln |W (z)|2, (2.5)

which is invariant under Kähler transformations. In particular, since Gαβ̄ = Kαβ̄ , the

kinetic term T and potential V can be written as:

T = Gαβ̄∂µzα∂ν z̄β̄gµν V = eG[Gαβ̄GαGβ̄ − 3] (2.6)

The points, z = z0, where the F-terms vanish,

DαW |z=z0 = ∂αW |z=z0 + ∂αK|z=z0W |z=z0 = 0 ⇔ ∂αG|z=z0 = 0

are called SUSY critical points. They are automatically critical points of V because

∂γV |z=z0 =

[

GγV + eG∂γ(Gαβ̄GαGβ̄)

]

|z=z0 = 0 (2.7)

Unlike in global SUSY, where supersymmetric critical points are always absolute minima

of V , the critical points in SUGRA may be local minima, maxima or saddle points. In

SUGRA, supersymmetric critical points are always3 AdS since V (z0) = −3eG(z0). This

3The case eG(z0) = 0, which corresponds with a Minkowski spacetime is excluded by the condition W 6= 0
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means that local maxima or saddle points are not necessarily unstable before uplifting [42].

However, after uplifting to Minkowski or dS, only local minima are stable. In a Minkowski

background, the gravitino mass is m2
3/2 = eG.

In the next section we consider uplifting to positive V by coupling the {zα} fields to

another set of fields {φi} that we shall name the uplifting sector, also composed of neutral

chiral superfields. Ultimately, the visible sector must also be included but this is beyond

the scope of this paper. Here we are interested in the effect of uplifting on the moduli.

3. F-term uplifting consistent with Kähler invariance

We consider the coupling of two sectors with neutral chiral superfields ξI = zα, φi. We

assume that each sector has a SUGRA description with a well-defined Kähler function (a

non-zero superpotential). If the sectors are sufficiently decoupled we expect the kinetic

terms to add at tree level without interaction, so we take

K = K(1)(z, z̄) + K(2)(φ, φ̄) (3.1)

which makes the Kähler metric block diagonal, and thus the kinetic terms decouple:

KIJ̄∂µξI∂µξ̄J̄ = K
(1)

αβ̄
(z, z̄)∂µzα∂µz̄β̄ + K

(2)

ij̄
(φ, φ̄)∂µφi∂µφ̄j̄ (3.2)

As explained in the introduction, the ansatz (3.1) plus the condition of invariance

under Kähler transformations of the individual sectors:

K(1)(z, z̄) → K(1)(z, z̄) + f (1)(z) + f̄ (1)(z̄) W (1)(z) → W (1)(z)e−f(1)(z)

K(2)(φ, φ̄) → K(2)(φ, φ̄) + f (2)(φ) + f̄ (2)(φ̄) W (2)(φ) → W (2)(φ)e−f(2)(φ) (3.3)

for arbitrary f (1)(z) and f (2)(φ), forces us to add the full Kähler functions:

G(z, z̄, φ, φ̄) ≡ K + ln |W |2 = A(z, z̄) + B(φ, φ̄) (3.4)

where A and B are the corresponding Kähler functions for both sectors. In our previous

notation, A ≡ G(1) ≡ K(1) + ln |W (1)|2, B ≡ G(2) = K(2) + ln |W (2)|2. The potential

becomes

V = eG[GIJ̄GIGJ̄ − 3]= eA+B [Aαβ̄AαAβ̄ + Bij̄BiBj̄ − 3] (3.5)

Note that the first term in the square bracket is a function of (z, z̄) only, and the uplifting is

provided by the second term, Bij̄BiBj̄, which is a function of (φ, φ̄) alone. The exponential

outside the bracket provides a direct coupling between the two sectors. Alternatively, we

can write

V = eBVA(z) + eAVB(φ) + 3eA+B (3.6)

where VA(z) = eA[Aαβ̄AαAβ̄ − 3] would be the potential calculated for the z sector alone

and similarly for VB(φ).

– 6 –
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3.1 Critical points and stability; SUSY breaking

As we pointed out in the introduction, coupling the uplifting sector to the supersymmetric

sector according to the ansatz (3.4) respects the SUSY properties of the individual sectors.

In particular the supersymmetric critical points of the z-sector are still critical points of the

full potential. To see this suppose z = z0 is a SUSY critical of the z-sector, ∂αA(z0) = 0,

then from (3.6) we can see that z0 also satisfies the necessary condition to be a critical

point of the full potential:

Vα(z0) = [eBVA α + Aα eAVB + 3Aα eA+B ]z=z0 = 0. (3.7)

and furthermore the F -terms for z vanish in the full model:

|Fz |2 = eGGαβ̄GαGβ̄|z0 = 0, since we have Gα(z0) = Aα(z0) = 0, (3.8)

which means that the moduli sector does not contribute to SUSY breaking at tree level.

For z = z0 to really correspond to a critical point of the full potential we have to find a

configuration φ = φ0 so that the criticality condition for the uplifting sector ∂iV (z0, φ0) = 0

is also satisfied. Using that VA|z=z0 = −3eA(z0) we find that the full potential evaluated at

the point z = z0 is given by the expression

V |z=z0 = eA(z0)VB(φ) , (3.9)

which differs only from the original potential of the uplifting sector by an overall factor

eA(z0). Therefore in order to be at an extremum (local minimum) of the full potential we

just have to fix the uplifting sector at any extremum (local minimum) of VB , which we

denote by φ = φ0.

Now we turn to the issue of stability of the critical point (z0, φ0) with z0 being a

supersymmetric critical point of the z−sector. An interesting feature of this model is that

it is enough to analyze the stability of the critical point along the φi and zα directions

separately. Indeed, the the mass matrix has a block diagonal form, i.e. Vαi(z0, φ0) =

Vαī(z0, φ0) = 0, and therefore we just have to check whether the eigenvalues of the matrices

(

Vαβ̄(z0, φ0) Vαβ(z0, φ0)

Vᾱβ̄(z0, φ0) Vᾱβ(z0, φ0)

)

and

(

Vij̄(z0, φ0) Vij(z0, φ0)

Vīj̄(z0, φ0) Vīj(z0, φ0)

)

(3.10)

are all positive. The cross terms, Vαi and Vαī, can be calculated taking the derivatives

of (3.7) w.r.t. φi and φ̄ī. Then, using that Az and VA z are zero at z = z0, it is easy to

check that they will all vanish once evaluated at the critical point:

Vα i|z=z0 = [Bie
BVA α + AαeAVB i + 3eA+BAαBi]z=z0 = 0 ,

Vα ī|z=z0 = [Bīe
BVA α + AαeAVB ī + 3eA+BAαBī]z=z0 = 0. (3.11)

Before we continue discussing the stability of the critical point let us make some remarks

about the uplifting of the SUSY critical point of the z−sector, z0. For later convenience

let us introduce the notation

b(φ) = Bij̄BiBj̄, (3.12)

– 7 –
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so that the potential of the uplifting sector alone, VB, reads

VB(φ) = eB(φ)[b(φ) − 3]. (3.13)

The quantity b is related to the F-terms calculated from the φ sector alone |Fφ|2 = eB b,

and therefore to the SUSY breaking scale Ms, since |Fφ| = M2
s .

In view of equation (3.9), which gives the vacuum expectation value of the full potential

with z fixed at z0, it is now clear that in order to uplift the SUSY critical point to Minkowski

or de Sitter, we have to stabilize the φ−sector at Minkowski of de Sitter vacuum of VB , φ0,

so that VB|φ=φ0 = 0 or VB |φ=φ0 > 0 respectively. Thus for uplifting to Minkowski we need

the φ−sector to be stabilized at a point φ0 with b(φ0) = 3, while for uplifting to de Sitter

we have to require b(φ0) > 3.

As we argued above in order to analyze the stability of the critical point (z0, φ0) it

is enough to study the stability along the zα and φi directions separately, since the cross

terms of the mass matrix vanish (3.11). Therefore in order to analyze the stability along

the zα directions it is enough to study the potential evaluated at φ = φ0, which reads:

V |φ=φ0 = eB(φ0)[VA(z) + eA(z)b(φ0)]. (3.14)

From this equation it is clear that the result of the stability analysis will depend on the

uplifting sector only through the value of b(φ0). A remarkable property of our model is

that all SUSY critical points of the z−sector are either stable or marginally stable in the

zα directions after the uplifting to Minkowski vacuum (b = 3). To see this we set b(φ0) = 3

in the previous equation (3.14), then the full potential evaluated at the point φ0 reads

V |φ=φ0 = eA(z)+B(φ0)Aαβ̄AαAβ̄ ≥ 0 for all z. (3.15)

Since, by assumption, V (z0, φ0) = 0, the condition (3.15) implies that no fluctuation of the

fields on the z−sector can decrease the energy, and therefore the point (z0, φ0) is either a

local minimum or a plateau along the zα directions. A similar result was found in [43].

Here Blanco-Pillado et al. argued that SUSY vacua with vanishing cosmological constant

are automatically stable, up to flat directions. Note that such minima necessarily have a

vanishing superpotential, while in our case we are assuming that the superpotential does

not vanish at the critical point. The main difference is that the Minkowski critical point in

our model is not supersymmetric, but the coupling to the SUSY breaking sector using (1.3)

respects the supersymmetric character of the z-sector enough to ensure the stability of the

critical point along the zα directions.

In general we cannot make a similar statement for uplifting to de Sitter critical points,

and the stability will depend on the masses of the zα fields before the uplifting and the

value of b. However the analysis of the stability simplifies for large values of the uplifting

parameter b. With the total potential written as in (3.14) we can see that for high values

of b(φ0) the second term dominates, and therefore the minima of eA are the ones that will

survive the uplifting. Moreover, the higher the value of b the higher the masses of the zα

fields will be after the uplifting. Note also that minima of eA are not necessarily minima

– 8 –
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of VA. In the one-modulus example described in section 4 the minima of eA correspond to

either local maxima or saddle points of the potential VA.

We will now comment on the stability of the critical point (z0, φ0) along the φi direc-

tions. Since the stability analysis along the φi directions is decoupled from the one along

the zα directions, it is enough to consider the potential once evaluated at z = z0 (3.9). In

view of this equation we can conclude that the minima of the combined potential coincide

with the minima of the potential of the uplifting sector before the combination, VB(φ), and

in general it has to be checked case by case. In the special case of uplifting to Minkowski we

just argued that the critical point is stable, or marginally stable along zα directions, so it

is evident that the problem of uplifting the SUSY vacua of the z−sector to Minkowski has

now reduced to finding the stable Minkowski minima of the uplifting sector. The conditions

for the existence of SUSY-breaking Minkowski vacua have been extensively analyzed by

Gomez-Reino and Scrucca [13, 44, 45] as well as in [43].

Finally, in these Minkowski backgrounds, the gravitino mass after uplifting is related

to the gravitino mass of the uplifting sector alone by

m2
3/2 = eA(z0)m2

3/2,φ (3.16)

which is a special case of the more general relation

eG(z0,φ0) = eA(z0)eB(φ0) (3.17)

3.2 Supersymmetric critical points; BPS configurations

As we discussed in the previous subsection, when the zα fields are stabilized at a SUSY crit-

ical point of the z−sector, ∂αA|z=z0 = 0, there is no contribution from this sector to SUSY

breaking in the full theory at tree level, i.e. the F−terms associated to these fields vanish.

Therefore, for the complete theory to be at a SUSY critical point we just have to impose

the additional condition that the F-terms for φ also vanish: |Fφ|2 = eGGij̄GiGj̄ |φ=φ0 = 0,

which is satisfied if and only if the φi fields are stabilized at SUSY critical point of the

φ−sector, Gi|φ=φ0 = Bi(φ0) = 0. In other words, after fixing the z-fields at the SUSY crit-

ical point of the z-sector, the remaining effective theory for the φ fields gives the correct

information about the critical points of the full theory.

This is closely related to the idea of integrating out heavy chiral multiplets super-

symmetrically, which was first considered in [41] (see also [46]) and it is no accident that

they found the same ansatz (1.3). Suppose that the zα fields belong to the heavy chiral

multiplets we want to integrate out. Then, when the energy scale under consideration is

much lower than the masses of the z−sector we can fix these fields to their v.e.v.’s to a

good approximation. If the z−sector is stabilized at a SUSY critical point, the effective low

energy theory for the φ−sector has unbroken N = 1 local supersymmetry and is described

by the Kähler function:

Geff(φ) ≡ G|z=z0 = A(z0) + B(φ), (3.18)

which according to our previous argument would give the correct SUSY critical points in

the full theory, since ∂iGeff = ∂iB.
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Other supersymmetry properties are also correctly inferred from the “effective” φ-

theory, for instance BPS configurations of the φ-sector are also BPS in the coupled theory

since the z fields do not contribute to SUSY breaking.

3.3 Shift symmetries

Whenever the Kähler function has a shift symmetry,4 as G(z + z̄), or G(φ + φ̄) there is a

flat direction in the potential. For example if we assume

(∂z − ∂z̄)G = 0 we have (∂z − ∂̄z̄)V = 0 , V = V (z + z̄). (3.19)

The ansatz (3.4) ensures that the shift symmetries of A or B are also shift symmetries of

full Kähler function G. Then if one of the two sectors has a flat direction in the potential

which is related to a shift symmetry in its Kähler function, the same flat direction will

survive in the full potential. This statement is still true for an arbitrary number of coupled

sectors.

We can find an example of this situation in [33]. Here Hsu et al. give an effective

SUGRA description of D3-D7 brane inflation in a type IIB string compactification. The

D3-D7 configuration is BPS, resulting in a supersymmetric flat direction of the potential,

which corresponds to the distance between the D7 and the D3 branes. Such a flat direction

was implemented by introducing a Kähler function with a shift symmetry:

G = −3 ln(ρ + ρ̄) − (S − S̄)2

2
+ ln |WKKLT(ρ)|2 (3.20)

where ρ is the volume modulus, WKKLT = W0 + Ae−aρ is the KKLT potential and S is a

modulus describing the relative distance between a probe D7 brane and a heavy stack of

D3 branes. The scalar potential derived from this Kähler function is independent of Re(S)

as a consequence of the shift symmetry in G.

In order to be able to use the shift symmetry as an inflationary trajectory, first we

have to uplift it to de Sitter. In ref [33] the uplifting was achieved with D-terms. If we

want to do the uplifting with F-terms while preserving the shift symmetry at tree level we

can find two possibilities. We can add a new sector to the theory that is responsible for

the uplifting and couple it using the ansatz (1.3), or we can add a term ∆G(S − S̄) to the

Kähler function such that, the S−sector is the one playing the role of the uplifting sector,

which has been coupled using (1.3). We have studied the first possibility in a toy model

with a single modulus in the z−sector. The results can be found in subsection 4.3.

Ref. [47] also describes a way to obtain exactly flat inflationary trajectories at tree

level where the vacuum energy is also F−term dominated, but unlike in our case, the flat

direction is not associated with a shift symmetry of the Kähler function.

4Note that we are considering shift symmetries of the full Kähler function G, and not just of the Kähler

potential K, so that the statement is consistent with Kähler invariance.
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4. Moduli stabilization in a toy model

In this section we will study in detail the stability properties of a simple model consisting

of one modulus field z and one or more uplifting fields φi, with Kähler function

G = A(z, z̄) + B(φi, φ̄ī) . (4.1)

We start by calculating the mass spectrum of the modulus at the critical point before

we couple the uplifting sector. We then calculate the stability after uplifting to dS or

Minkowski space. The conclusions are summarized in figure 1.

4.1 Stability of the critical point before uplifting

In order to find the mass spectrum we expand the potential around the supersymmetric

critical point z0, z = z0 + ẑ:

V = V (z0) +
1

2
Vzz(z0) ẑ2 +

1

2
Vz̄z̄(z0) ˆ̄z

2
+ Vzz̄(z0) ẑˆ̄z + . . . , (4.2)

The diagonalization of the mass matrix gives us the spectrum of masses squared:

m2
± = (Vzz̄(z0) ± |Vzz(z0)|)/Azz̄(z0). (4.3)

The condition for a local minimum is therefore Vzz̄(z0) > |Vzz(z0)| > 0. Now we will write

this condition in terms of the Kähler function A. Using 2.6, with G replaced by A, we find

for the first derivative of the potential:

Vz = AzV + eA(Azz̄
z AzAz̄ + Azz̄AzzAz̄ + Azz̄AzAzz̄) (4.4)

Then the second derivatives evaluated at the critical point z = z0 read:

Vzz(z0) = −Azz(z0)e
A(z0) (4.5)

Vzz̄(z0) = eA(z0)[Azz̄|Azz|2 − 2Azz̄]z=z0 (4.6)

Here we used the assumption that we are expanding around a critical point and thus

Az(z0) = Az̄(z0) = 0. Defining

x ≡
∣

∣

∣

∣

Azz

Azz̄

∣

∣

∣

∣

z=z0

, (4.7)

we find that before uplifting

m2
± = eA(z0)(|x|2 − 2 ± |x|) (4.8)

which gives a characterization of the critical points in terms of |x|:5

|x| > 2 local AdS minimum (4.9)

1 < |x| < 2 AdS saddle point

|x| < 1 local AdS maximum

Local maxima in AdS are not necessarily unstable [42] but such stability information is

not necessary for the present calculation.

5Note that the stability condition is invariant under x → eiθ x, which is related to the U(1) symmetry

z → e−i θ

2 z.
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4.2 Stability after uplifting

Take now the Kähler function to be of the form (4.1). Then, as it was discussed in section 3,

after coupling the uplifting sector z0 remains a critical point of the full potential. Moreover

the mass matrix has a block diagonal form, Vzi(z0) = Vzī(z0) = 0, and therefore the stability

properties of the supersymmetric sector A can be studied by just considering the derivatives

of the potential w.r.t. z and z̄, and the resulting stability condition for the field z is again

of the form (4.3). We just have to calculate Vzz and Vzz̄. From (3.6) we obtain:

Vzz|z=z0 = [eBVA zz + Azze
AVB + 3Azze

A+B]z=z0 (4.10)

Vzz̄|z=z0 = [eBVA zz̄ + Azz̄e
AVB + 3Azz̄e

A+B]z=z0 . (4.11)

We can recast these equations in a more compact form using (4.7), and using the abbrevi-

ation (3.12) b ≡ Bij̄BiBj̄, which is only a function of the uplifting sector:

Vzz|z=z0 = eA+B |z=z0(b − 1) x Vzz̄|z=z0 = eA+B |z=z0(|x|2 + b − 2) (4.12)

Here, as in the previous section |x| = |Azz/Azz̄|z=z0 . Finally we can write the spectrum of

masses squared around the critical point:

m2
± = eA+B|z=z0

[

(|x|2 + b− 2)± |(b− 1)x|
]

= eA+B |z=z0

[

(

|x| ± 1

2
(b − 1)

)2

− 1

4
(b − 3)2

]

(4.13)

To simplify the mass formula we assumed that b > 1. In the opposite case, b < 1, the masses

m2
+ and m2

− are exchanged. The stability condition for the field in the supersymmetric

sector after uplifting reads:

m2
± = eA+B|z=z0

[(

|x| ± 1

2
(b − 1)

)2

− 1

4
(b − 3)2

]

≥ 0 (4.14)

The solutions to these inequalities in the case of uplifting to Minkowski or de Sitter, b ≥ 3,

are presented in figure (1). We list here some interesting properties:

• Notice that the stability properties do not depend on the details of the uplifting

sector, just on the amount of uplifting b. This actually fits in the intuition of weakly

coupled systems.

• All critical points z0 that were local minima before the uplifting (b = 0, |x| > 2)

remain stable for a certain amount of uplifting, and then all became unstable. As an

example, the minimum found in the original KKLT paper [1] had |x| ∼ 25.

• Critical points that are local maxima with |x| < 1 before uplifting, b = 0, become

stable for b = 3, and remain stable for arbitrarily higher values of b. These points

correspond to local minima of eA/2.

In the case x = 0, which corresponds with having no ẑ2 terms in A(z, z̄), the two masses

are equal, m2
± = (b − 2)eA+B |z0, and both positive for b > 2. Points with |x| = 1 have one

of the masses equal to zero for any uplifting.
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Figure 1: Stability of critical points after uplifting to Minkowski (b = 3) or de Sitter (b > 3)

in the toy model described in the text. The shaded areas indicate stability along the moduli z

directions. The vertical axis shows the quantity b − 3 = e−GV/M4

p evaluated at the critical point,

which represents the amount of uplifting. The horizontal axis shows the value of the quantity

|x| = |Gzz/Gzz̄ ||z=z0
at the critical point. Local minima before uplifting (|x| > 2) become unstable

for sufficiently large upliftings. By contrast, local maxima before uplifting (|x| < 1) become more

stable with increasing uplifting.

Uplifting to non-supersymmetric Minkowski vacua has a special property. If b = 3 the

mass squared

(m2±)Minkowski = m2
3/2(|x| ± 1)2 (4.15)

is positive definite for any choice of A(z) (any value of |x|). Here we have used that in

Minkowski vacuum the gravitino mass is given by m2
3/2 = eA+B |z0,φ0. This situation is

close in spirit to the global susy case where critical points are always absolute minima.

Here, Minkowski vacua are local minima of the supersymmetric sector whenever |x| 6= 1

or have a zero mode when |x| = 1. In the next section we give an explicit example of this

latter case based on a shift symmetry.

4.3 A simple example: an uplifted flat direction in dS protected by shift sym-

metry

We will now consider the case where the Kähler function of the supersymmetric sector

A(z, z̄) has a shift symmetry, we will take it to be of the form A = A(z + z̄). Given the

shift symmetry, ∂z and ∂z̄ are interchangeable when they act on A or V so, in particular

we have

Az = Az̄, Azz = Azz̄ and Vzz = Vzz̄. (4.16)

Suppose now that A(z, z̄) has a SUSY critical point.6 For this critical point we have

|x| = |Azz/Azz̄| = 1. Before uplifting there is one flat direction (zero mass) and one

6The KKLT superpotential for the volume modulus with W0 = 0 is of this form, W = Ae−az which

gives G = −3 log(z + z̄) − a(z + z̄) + const. but its SUSY critical point is unphysical since it has negative

z + z̄ at z0, Az(z0) = 0
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“tachyonic” direction with negative mass squared

m2
− = 0 (4.17)

m2
+ = 2Vzz̄/Azz̄|z=z0 = −2eA|z=z0 < 0. (4.18)

The zero mode reflects the fact that the potential does not depend on Imz, and the Re

z direction is always a local maximum since Azz = Azz̄ > 0, although not necessarily

unstable since we are in AdS. After uplifting, the mass squared becomes positive while the

flat direction remains

m2
− = 0 (4.19)

m2
+ = 2Vzz̄/Azz̄|z=z0 = eA+B|z=z0(b − 1), (4.20)

so in this case it seems we can have positive mass squared whenever b = Bij̄BiBj̄ ≥ 1,

and in particular whenever b ≥ 3. We note, however, that these results are only in our toy

model but whether they generalize to the case with several moduli remains to be seen.

For b > 3 this simple model has a de Sitter, exactly flat z direction protected by

the shift symmetry. Note that this “inflaton trench” is an F-term-uplifted AdS “ridge”

(a line of local maxima), in contrast with the one proposed in [33], which was an AdS

“trench” uplifted by D-terms. Its viability as an inflationary trajectory depends on whether

the quantum corrections (from couplings to other fields) will tilt the flat direction to the

required level. Alternatively, a soft breaking of the shift symmetry can be introduced. A

graceful exit from inflation requires a more complicated scenario. But the point we want

to emphasize is that there is no η problem.

5. Summary and discussion

Motivated by the KKLT uplifting problem, we have investigated a class of models where

the Kähler potential and the superpotential are of the form:

K(zα, z̄ᾱ, φi, φ̄i) = K(1)(zα, z̄ᾱ) + K(2)(φi, φ̄i)

W (φi, zα) = W (1)(zα)W (2)(φi),

or, equivalently, where the full Kähler function is of the form

G = G(1)(zα, z̄ᾱ) + G(2)(φi, φ̄i) . (5.1)

We have shown that these models have a number of interesting general properties:

• If zα = zα
0 is a SUSY critical point in the model defined by G(1)(zα, z̄ᾱ), that is, if

(∂G(1)/∂zα)|zα=zα
0

= 0, this sector will not contribute to SUSY breaking in the full

model: Fz ∝ (∂G/∂zα)|zα=zα
0

= 0. Moreover zα = zα
0 is automatically a critical point

of the combined (uplifted) potential in the z-direction.

• The stability of uplifted SUSY critical points of the z−sector, can be analyzed in-

dependently in the zα and φi directions, since the crossed second derivatives of the

combined potential vanish at this point: ∂α∂iV |z=z0 = ∂ᾱ∂iV |z=z0 = 0.
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• Local minima of the φ-potential when the uplifting sector is considered alone –the

model defined by G(2)(φi, φ̄ī)–, always remain local minima in the φ-directions after

the uplifting of the SUSY critical point of the z−sector, zα
0 . Moreover if the φ−sector

is stabilized at a Minkowski or de Sitter vacuum, zα
0 will be uplifted to Minkowski

and de Sitter respectively.

• When a supersymmetric critical point is uplifted to Minkowski the critical point

becomes automatically stable or flat along the zα directions. A similar result was

obtained in [43], where it was proven that all SUSY Minkowski critical points are

stable. However our result describes the uplifting of SUSY critical points to non

supersymmetric Minkowski vacua.

• When a supersymmetric critical point is uplifted to de Sitter, for sufficiently large

cosmological constant the local minima of G(1)(zα, z̄α) are always local minima of

the combined potential (after uplifting) along the zα-directions. Moreover, this local

minimum becomes more stable with increasing value of the cosmological constant.

Note that local minima of G(1) are always extrema of the moduli potential before

uplifting, but not necessarily local minima.

• Shift symmetries of the individual sectors survive after the uplifting, becoming inter-

esting candidates for inflationary trajectories.

We have studied in detail a toy model with a single field in the supersymmetric sector,

where we have analyzed the stability of the z−sector ”before”, and ”after” the uplifting.

We have confirmed that uplifting to Minkowski space is special in that all SUSY critical

points (irrespective of the choice of G(1)(z, z̄)) become stable or neutrally stable. Indeed,

after uplifting to Minkowski, the moduli masses are given by

m2
± = m2

3/2(|x| ± 1)2 , with |x| = |G(1)
zz /G

(1)
zz̄ |z=z0 = |Gzz/Gzz̄|z=z0 . (5.2)

Note that if |x| > 2 the masses of the scalars in the supersymmetric sector are larger

than the gravitino mass, for example, in the case of the KKLT model, |x| ∼ 25, they are

considerably larger. In general for |x| < 1, m± are of the order of the gravitino mass, except

when the value of x is very close to 1, because in this case m− becomes significantly lower

than m3/2. The case |x| < 1 is interesting because an uplifted critical point is stable for an

arbitrary amount of uplifting. These critical points are precisely the minima of G(1)(z, z̄),

which in this toy model correspond to local AdS maxima of the scalar potential before

uplifting.

Finally, we have shown that performing Kähler transformations before coupling two

sectors gravitationally

K = K(1) + K(2) W = W (1) + W (2) , (5.3)

may lead to direct couplings, and therefore the choice of Kähler gauge plays an important

role in the applicability of this prescription.

– 15 –



J
H
E
P
0
3
(
2
0
0
8
)
0
0
2

An important consideration is whether string theory contains sectors that are coupled

in the way described in this paper. We think it may be possible to find such couplings in

certain N = 2 compactifications where the presence of fluxes breaks supergravity down to

N = 1. N = 2 supergravity requires that the kinetic terms of the scalars of vector and

hypermultiplets appear totally decoupled from each other, and although the scalar manifold

in general gets distorted during the SSB, there are known cases where this decoupling

prevails [48 – 51]. This leads to effective N = 1 theories with a Kähler potential of the

form (1.4). Moreover it is known that if the effective N = 1 resulting from the SSB is

consistent with a truncation of N = 2 there are situations where the superpotential has a

product structure

W = W (1)(vector) W (2)(hyper) (5.4)

where W (1) and W (2) depend only on the scalars that came from the N = 2 vector and

hypermultiplets respectively [52, 53], which is precisely the kind of structure that we have

studied in this paper.

Acknowledgments

We thank J.A. Casas, S. Davis, M. Esole, S. Hardeman, R. Jeannerot, M. Postma, F.

Quevedo, K. Schalm and S. Vandoren for very useful discussions. This work was supported

in part by the Netherlands Organisation for Scientific Research (N.W.O.) under the VICI

Programme, by the Basque Government grant BFI04.203 and by the Spanish Ministry of

Education through project FPA2005-04823.

References

[1] S. Kachru, R. Kallosh, A. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys.

Rev. D 68 (2003) 046005 [hep-th/0301240].

[2] C.P. Burgess, R. Kallosh and F. Quevedo, De Sitter string vacua from supersymmetric

D-terms, JHEP 10 (2003) 056 [hep-th/0309187].

[3] G. Villadoro and F. Zwirner, De Sitter vacua via consistent D-terms, Phys. Rev. Lett. 95

(2005) 231602 [hep-th/0508167].

[4] A. Achucarro, B. de Carlos, J.A. Casas and L. Doplicher, de Sitter vacua from uplifting

D-terms in effective supergravities from realistic strings, JHEP 06 (2006) 014

[hep-th/0601190].

[5] K. Choi and K.S. Jeong, Supersymmetry breaking and moduli stabilization with anomalous

U(1) gauge symmetry, JHEP 08 (2006) 007 [hep-th/0605108].

[6] E. Dudas and Y. Mambrini, Moduli stabilization with positive vacuum energy, JHEP 10

(2006) 044 [hep-th/0607077].
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[49] P. Fré, L. Girardello, I. Pesando and M. Trigiante, Spontaneous N = 2 → N = 1 local

supersymmetry breaking with surviving compact gauge groups, Nucl. Phys. B 493 (1997) 231

[hep-th/9607032].

[50] S. Ferrara and M. Porrati, N = 1 no-scale supergravity from IIB orientifolds, Phys. Lett. B

545 (2002) 411 [hep-th/0207135].

– 18 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C0310%2C013
http://arxiv.org/abs/hep-th/0308055
http://jhep.sissa.it/stdsearch?paper=11%282004%29063
http://arxiv.org/abs/hep-th/0406230
http://jhep.sissa.it/stdsearch?paper=09%282006%29002
http://arxiv.org/abs/hep-th/0603129
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C0312%2C009
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C0312%2C009
http://arxiv.org/abs/hep-th/0311077
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB584%2C147
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB584%2C147
http://arxiv.org/abs/hep-th/0312020
http://jhep.sissa.it/stdsearch?paper=04%282004%29042
http://arxiv.org/abs/hep-th/0402047
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C85%2C3572
http://arxiv.org/abs/hep-ph/0004243
http://jhep.sissa.it/stdsearch?paper=12%282004%29004
http://jhep.sissa.it/stdsearch?paper=12%282004%29004
http://arxiv.org/abs/hep-th/0411011
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LNPHA%2C738%2C119
http://arxiv.org/abs/hep-th/0702059
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB718%2C113
http://arxiv.org/abs/hep-th/0503216
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB626%2C223
http://arxiv.org/abs/hep-th/0506266
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C21%2C3137
http://arxiv.org/abs/hep-th/0402046
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB115%2C197
http://jhep.sissa.it/stdsearch?paper=05%282006%29053
http://arxiv.org/abs/hep-th/0511042
http://jhep.sissa.it/stdsearch?paper=09%282006%29008
http://arxiv.org/abs/hep-th/0606273
http://jhep.sissa.it/stdsearch?paper=08%282007%29091
http://arxiv.org/abs/0706.2785
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB628%2C183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB628%2C183
http://arxiv.org/abs/hep-th/0506267
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB459%2C91
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB459%2C91
http://arxiv.org/abs/hep-ph/9903492
http://arxiv.org/abs/hep-th/0203138
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB493%2C231
http://arxiv.org/abs/hep-th/9607032
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB545%2C411
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB545%2C411
http://arxiv.org/abs/hep-th/0207135


J
H
E
P
0
3
(
2
0
0
8
)
0
0
2

[51] L. Andrianopoli, R. D’Auria, S. Ferrara and M.A. Lledó, N = 2 super-Higgs, N = 1 Poincaré
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